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Abstract: In recent years, with the rapid development of computer vision, increasing attention has
been paid to remote sensing image scene classification. To improve the classification performance,
many studies have increased the depth of convolutional neural networks (CNNs) and expanded
the width of the network to extract more deep features, thereby increasing the complexity of the
model. To solve this problem, in this paper, we propose a lightweight convolutional neural network
based on attention-oriented multi-branch feature fusion (AMB-CNN) for remote sensing image
scene classification. Firstly, we propose two convolution combination modules for feature extraction,
through which the deep features of images can be fully extracted with multi convolution cooperation.
Then, the weights of the feature are calculated, and the extracted deep features are sent to the attention
mechanism for further feature extraction. Next, all of the extracted features are fused by multiple
branches. Finally, depth separable convolution and asymmetric convolution are implemented to
greatly reduce the number of parameters. The experimental results show that, compared with some
state-of-the-art methods, the proposed method still has a great advantage in classification accuracy
with very few parameters.

Keywords: remote sensing image; scene classification; attention; feature fusion; convolutional neural
network (CNN)

1. Introduction

Remote sensing image scene classification refers to the use of aerial scanning, mi-
crowave radar, and other methods to image the target scene and then extract useful
information from different scene images, thus enabling an analysis and evaluation of the
scene image. Relevant research on remote sensing scene classification has been widely
used in national defense security [1], analyses of crop growth [2], and environmental
management [3]. Because of the large content differences in the same scene, the similar
content in different scenes, the inconsistent spatial scales of landforms, and the different
shapes and sizes of images, remote sensing image scene classification has become a very
challenging task. Therefore, in recent years, some researchers have focused on the effective
scene classification of remote sensing images.

Deep learning, a very effective technology in the field of computer vision, was con-
sidered one of the ten technological breakthroughs in 2013. With the development of
imaging technology and hardware equipment, deep learning has become widely used
in remote sensing image scene classification and has natural advantages. Convolution
neural networks (CNNs) can extract rich feature details from images and are used by most
researchers [4–6]. However, increasingly, researchers are expanding the depths and widths
of the neural networks to improve the performance of image classification. Although CNN
has a certain role, the demand for computing equipment continues to increase, as does the
necessary calculation time of the model.
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Remote sensing image scene classification is a challenging task. In the early days, some
traditional manual feature extraction methods and middle-level feature extraction methods
were used. Researchers usually extracted the spectral, textural, and structural information
of remote sensing images directly based on traditional methods, such as scale-invariant
feature transform [7] (SIFT), generalized search trees [8] (GIST), and histogram of oriented
gradients [9] (HOG). However, these methods are not very efficient. Then, some methods
were proposed based on unsupervised learning methods, such as K-means clustering
and Gaussian mixed models [10], sparse coding [11], and self-coding algorithms [12].
However, the extracted features are not ideal. Recently, feature extraction methods based
on convolutional neural network have constantly been emerging. The earliest convolution
neural network, LeNet, was proposed by Y. Lecun [13], and has been used in handwritten
number recognition tasks. Krizhevsky and Hinton [14] suggested that AlexNet, which
uses two GPUs that interact with each other, greatly improves the efficiency of training,
which has aroused the interest of many researchers. Simonyan and Zisserman et al. [15]
proposed VGGNet, which achieved a good classification accuracy via the linear stacking
of multiple convolutions. Later, K. He proposed ResNet [16] by applying the idea of
residual learning, adding jump links to the feature extraction network, and alleviating the
problem of information loss in traditional convolution neural network layer transfer. Since
then, most researchers have used these classical convolutional neural network models to
improve the performance of remote sensing image scene classification. In addition, how to
fuse each convolution layer to extract features is also a major factor to improve the model
classification performance. The low-level feature image passes through less convolution
layers, so it usually has lower semantics and more noise, which affects the classification
performance of the model to some extent. According to this, feature fusion methods
can be divided into the following two types: early fusion and late fusion. The former
first fuses the extracted multi-layer features, and then trains the predictor with the fused
features. The latter predicts multiple features, and then the prediction results are merged.
Y. Liu et al. [17] found that there was considerable information in the shallow layer of
the image. Therefore, a two-stage depth feature fusion model was proposed. This model
integrates the two-stage features adaptively and further improves the performance of
the model. However, it is still not a good solution to the problem of large intra-class
differences and high inter-class similarity of remote sensing scene images. Then, Chaib [18],
G. Cheng [19], and F. Zhao [20] proposed the discriminant correlation analysis (DCA)
feature fusion method, the discriminative CNNs (D-CNNs) model, and variable-weighted
multi-feature fusing (VWMF) model to solve these problems. However, in the D-CNN
method of VGG16, the parameters of this method reached 130MB, which not only consumes
a lot of training time, but also requires a high performance of computing environment.

Although the above network models can provide a good classification performance,
the depth and complexity of networks are increasing. In 2016, a lightweight network
(SqueezeNet) [21] was proposed, and the complexity of network gradually became the
focus of attention. Then, in 2017, MobileNet [22] emerged and became popular because of
its small network parameters and fast computational speed. Since then, it has become a
research direction of many researchers for exploring a lightweight convolutional neural
network with a small number of parameters and a high efficiency. Later, G. Cheng et al. [19]
improved AlexNet and combined it with the D-CNN method. Compared with VGG16
as the basic network, the number of parameters is not only smaller, but the classification
accuracy has also been improved to a certain extent. Y. Liu [17] proposed a two-branch
model with a fixed scale and a different scale network that used AlexNet as the base model.
Although the number of parameters for these methods has decreased somewhat, it still
reaches up to 60 MB. Liu et al. proposed a weighted spatial pyramid matching collaborative-
representation-based classification method, and further improved AlexNet, which is used
as the basic network for feature extraction. W. Zhang et al. [23] proposed a capsule network
structure based on InceptionNet, which focuses on the connection of spatial information
while building a lightweight network, and reduces the information visibility loss. Although
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these methods can provide good classification accuracy, the number of parameters is still
large, so the efficiency of the model is limited. Therefore, how to reduce the complexity of
the model as much as possible while ensuring the classification accuracy is a problem that
needs to be further studied. At the same time, the attention-based strategy has become a
favorable method to improve the accuracy of classification.

In the field of artificial intelligence today, attention mechanisms are increasingly ex-
pected to focus on the details and locations of useful information, search for the important
characteristics of the target, and filter out irrelevant information so as to improve the
confidence of prediction. Attention mechanisms have emerged from research on human
vision and perform well in many tasks, such as target detection [24], sentence genera-
tion [25], and speech recognition [26]. Attention mechanism is mainly divided into three
categories, namely: soft attention, hard attention, and self attention. The soft attention
mechanism model is differentiable. By extracting the correlation weights between different
layers, it focuses on the correlation between the input features and target features. The
hard attention mechanism model is non-differentiable. Reinforcement learning is usually
used to explore the correlation between the input mechanism and the target extracted by
the convolutional neural network, which is more difficult to train than the soft attention
mechanism. The self attention mechanism mainly reflects the mutual attention of the
input information, and processes the feature information extracted by different layers in
parallel. In 2018, X. He et al. [27] proposed a sequence to sequence model that generates a
question-and-answer dialogue language model by applying an encoder–decoder structure
to multilingual translation. In addition, in 2017, a self-attention mechanism was proposed
in [28], which alleviated the shortcomings of traditional attention mechanisms, which
depend on external information and make greater use of the internal relationship of data.
In 2019, Wang et al. [29] proposed a cyclic attention model. Since then, many researchers
have tried to apply various attention mechanisms to remote sensing image scene classifica-
tion according to the characteristics of dense connection between the layers of DenseNet
and ResNet. W. Tong et al. [30] improved the DenseNet network and integrated it into a
channel attention model. Then, the attention mechanism was used to enhance the weight
of important feature information. D. Yu et al. [31] proposed a feature fusion framework
based on hierarchical attention and bilinear pool (HABFNet) with ResNet50 as the basic
network. The extracted information was enhanced and linearly fused. Through a large
number of experiments, H. Alhichri et al. [32] found the location for integrating the atten-
tion mechanism into the specific convolutional layer in the model, and proposed a deep
attention convolutional neural network (CNN), which makes the channel automatically
adjust the weight of the learning feature information when training CNN end-to-end by
back propagation. However, not all attention mechanisms are universal, and attention
strategies should to be designed according to the characteristics of the networks. It remains
a challenging task to develop an effective attention mechanism and to apply it to remote
sensing scene classification.

For remote sensing image scene classification, a lightweight attention-based multi-
branch feature fusion CNN (AMB-CNN) is proposed. On the premise of enlarging the
field of perception, the proposed model utilizes an alternating combination of different
convolutions for extracting deep features. The extracted effective information is sent to
the attention module to obtain new features, which are fused with the features from the
previous branches. The proposed AMB-CNN model can provide good performance in
remote sensing image scene classification with lower complexity.

The main contributions of this paper are as follows:
(1) Two convolution combination modules for feature extraction are proposed. These

modules use the method of multi-convolution cooperation outside the module and multi-
convolution alternately inside the module to enable the model to more fully determine the
key information of the image and to exactly discriminate the scene.
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(2) A strategy for fusing multi-branch features is explored. After extracting the feature
information from multiple branches, the attention mechanism is utilized to extract the
branch information again. Ultimately, the multi-segment features are fused.

(3) To solve the rapid growth of the network model parameters in recent years, a
lightweight model with fewer parameters is constructed. Different convolutions are utilized
to reduce the number of parameters of the network model. Meanwhile, the hard-swish
activation function is adopted to enhance the nonlinear representation ability of the model.

The rest of this paper is as follows. The proposed attention-based multi branch
feature fusion convolutional neural network (AMB-CNN) method is described in detail
in Section 2. In Section 3, the experiment and analysis are carried out, and a comparison
with the state-of-the-art methods is used to show the effectiveness of the proposed method.
Section 4 gives the discussion. The last section is the conclusions.

2. Materials and Methods
2.1. The Structure of the Proposed Method

The AMB-CNN method consists of eight groups, as shown in Figure 1. Here, Fsq
represents the compression process, Few represents the excitation process, Y is the channel
feature after dimensionality reduction, H is the height of the feature map, C is the channel of
the feature map, and Fscale represents the final output features of the squeeze and excitation
modules. The first three groups are utilized to extract the shallow feature of the remote
sensing images. This method combines the squeeze and excitation (SE) modules, enhances
the relationship between feature channels, expands the global perception field, and reduces
information loss during subsequent deep feature extraction. Starting with the fourth group,
a multilinear fusion strategy based on spatial and channel attention is used to extract more
useful information, as described in Section 2.2. Finally, in the eighth group, asymmetric
convolution is added to further reduce the number of parameters. The process of the
AMB-CNN model is described in Algorithm 1.
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Figure 1. The proposed attention-based multi branch feature fusion convolutional neural network (AMB-CNN)
network model.

In the main part related to extracting deep features (groups 4 to 7), each group can be
regarded as being composed of two modules whose inputs are obtained from the upper
end. These two modules are the alternating combinations of ordinary and depthwise
separable convolution, and a combination of ordinary and max-pooling layers, respectively.
When the two modules are fused directly, although the extracted feature information
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is better than that of a single branch, the overall improvement effect is still not ideal.
Therefore, the features extracted by one of the modules are input into the convolutional
block attention module (CBAM). Then, the features are further extracted and multi-branch
fusion is performed to obtain more key features, which is called Fmixed, as described in the
next section.

To build a lightweight network, this paper utilizes a combination of different con-
volutions to alleviate the problem of a large number of model parameters and to slow
the training speed, and abandons the traditional method of the direct linear stacking of
multiple large convolutions. Asymmetric convolution is applied in the eighth group of the
model. Compared with traditional convolution, the parameter quantity is greatly reduced.
A detailed introduction is provided in Section 2.3.

Algorithm 1 Framework of the proposed AMB-CNN model

Input: M is a feature map with size C×W × H, the number of convolution kernels is
V = [V1, V2, . . . , Vi]
1: Learn shallow features
2: For i in range Group 4
3: Extract the feature of target image F = M ∗V
4: Introducing dynamic features and activating channel weights
5: Eliminate data offset yi ← γx̂i + β ≡ BNγ,β(xi) (yi represents the result after the
normalization of the hidden layer, γ and β represents the weight parameter and x̂i represents the
input of any hidden layer activation function in the network)
6: Mapping features to a high-dimensional, non-linear space Fscale(li, ui) = li · ui
end
7: Learn deep features
8: For i in range (Group4:Group9)
9: Through multi convolution cooperative feature exploration, F1 and F2 are obtained (
F1 represents the features of the first branch extracted from the fourth to seventh group, and F2
represents the features of the second branch extracted from the fourth to seventh group)
10: Generative attention characteristics F3 = σ(W1(W0)Fc1 + W1(W0(Fc2)) + f ([Fs1; Fs2])) (Fc1 is
the global average pooling operations in spatial dimension, Fc2 is the global max pooling
operations in spatial dimension. Fs1 is the global average pooling operations in channel
dimension, Fs2 is the global max pooling operations in channel dimension.)
11: Fusion of multi segment features
Fmixed = ∑C

i=1 ∑H
j=1 ∑W

k=1([F1, F2, F3])
end
12: classifier
13: send Fmixed to the classifier
Output: the predicted category labels Z

As remote sensing scene images often have rich details and many landforms have a
high similarity, the model has been adjusted slightly. A more stable hard-swish is used
instead of ReLu as the activation function, which improves the non-linear representation
ability of the model. Finally, the convergence speed of the model is accelerated via batch
normalization (BN) layer processing. In addition, to prevent the phenomenon of over-
fitting in training, an L2 regularization penalty is utilized. The details are described in
Section 2.4.

2.2. Feature Extraction and Attention Module

The second and third groups of the model are designed to extract the shallow features
of the image. Here, we add the SE module, which takes the upper convolution block as the
input, uses the average pooling layer to compress each channel, and employs the dense
layer to increase the nonlinearity so as to reduce the complexity of the output channel. Next,
a dense layer is used to give the channel a smooth gating function. Finally, each feature map
is weighted to expand the field of perception, reduce the loss of feature information, and
provide more detailed information for the feature extraction from the fourth group. The SE



Remote Sens. 2021, 13, 1950 6 of 24

module includes the following two parts: squeeze and excitation. A detailed explanation is
provided in the following.

V = [V1, V2, . . . Vi] represents a set of filter kernels learned and Vi represents the
parameters of the i filter. The output U = [u1, u2, · · · , ui] can be show as follows:

ui = M ∗V (1)

where ∗ represents the operation of convolution, M is a feature map with size C×W × H,
ui represents the information of the i-th output channel, and Vi represents the convolution
kernel used in channel i of the input.

The channel correlation is reflected in the spatial correlation of the image, and now
the two are combined. When extracting the channel information, global average pooling is
used to compress multiple channels into one channel, where channel i is

zi =
1

H ×W

H

∑
j=1

W

∑
k=1

ui(j, k) (2)

where H is the height of the feature map and W is the width of the feature map. To obtain
the channel correlation, a gate function is employed, and a sigmoid is used as the activation
function, as follows:

l = σ(g(z, K)) (3)

where σ is the activation function, l is the output of the activation function, z is the channel,
and K represents the weights of the fully connected layers used for the dimension reduction
and dimension elevation. The gate mechanism is parameterized by forming a bottleneck
around the nonlinearity of two fully connected (FC) layers—that is, the dimension-reducing
layer parameter is W1, and the dimension-reducing scale is r. By adjusting the output U
with the activation function, the final output of the attention module is

Fscale = li · ui (4)

where Fscale refers to the corresponding channel product between the feature map ui ∈
RW × H and the original eigenvalue li.

For the main part of the image feature extraction (Groups 4 to 7), two modules are
proposed in this paper. The first module involves the alternate use of 2D convolution
and depthwise separable convolution. In the second part, the 2D convolution and the
max-pooling layer are cascaded, as shown in Figure 2.
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On this basis, the channel and spatial attention mechanisms are added to the beginning
layer (the fourth layer) and the end layer (the seventh layer) for deep feature extraction.
It should be noted that the beginning layer refers to the beginning stage of extracting
the deep features (groups 4 to 7 in the model), rather than the beginning of the whole
model. The output feature map F of the second module is transmitted to the convolutional
attention module (CBAM). We input a one-dimensional feature map of CBAM as Mc, with
the dimensions of 1× 1× C, and a two-dimensional feature map Ms, with the dimensions
of 1× H ×W. Then, the degree of attention can be represented as follows

F′ = Mc(M)⊗M (5)

F3 = Ms(F′)⊗ F′ (6)

where ⊗ represents the multiplication of elements, F′ represents the output feature map of
channel attention, and F3 represents the final output feature map of the CBAM attention
module. In this way, the key information and location of the feature map can be further
obtained when the receptive field of the shallow features is enlarged. Furthermore, the
ability of the feature extraction is enhanced.

2.3. Some Strategies of Building Lightweight Model

In the feature extraction, with the increase in the number of layers, the number of
parameter calculations also increases. Taking a 3 × 3 convolution as an example, the
parameter cost is massive after multi-channel convolution. Therefore, in the proposed
model, a hybrid method of depthwise separable convolution combined with traditional 2D
convolution is adopted, and the BN layer and nonlinear activation function are used after
convolution to accelerate the convergence speed. The complexity and parameters of the
depthwise separable convolution and the traditional 2D convolution are also compared.

Suppose the size of the input feature map is Tf × Tf × P, the size of the output feature
map is Tf × Tf × Q, and the size of the convolution kernel is Tk × Tk × P. Then, the
ordinary convolution parameter is Tk × Tk × P×Q. Depthwise separable convolution can
be regarded as the sum of the pointwise convolution and depthwise separation convolution,
where the parameter of the pointwise convolution is (1× 1× P)×Q, and the parameter of
the depthwise convolution is (Tk × Tk × 1)× P. The ratio of deep separable convolution to
ordinary convolution can be represented as Tk×Tk×P+P×Q

Tk×Tk×P×Q , which can be further represented

as 1
Q + 1

T2
k

after simplification.

The number of parameters can be reduced by about nine times when using a 3 × 3
convolution kernel, and by about 25 times when using a 5 × 5 convolution kernel.

In order to measure the computational complexity, the convolution step is set to 1.
As the zero-fill feature maps can ensure the same space size, the feature map of common
convolution output is

Rk,l,C = ∑
H,W,C

VH,W,C,n ∗Mk+H−1,l+W−1,C (7)

The computational complexity is Tf × Tf × P×Q× Tk × Tk. Here, the complexity is
related to the dimensions of the input and output channels, the input feature map, and the
convolution kernel. The depthwise separable convolution used here does not depend on
the size relationship between the convolution kernel size and the input feature map. In this
paper, each channel is convoluted step by step, as follows:

R̂k,l,C = ∑
H,W

V̂H,W,C ·Mk+H−1,l+W−1,C (8)

where R̂ represents the channel of the output feature map, V̂ is the convolution kernel,
H is the height of the feature map, W is the width of the feature map, k is the number of
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convolutional kernels, I is the length of convolutional kernel, C is the number of channels,
and n is the step of the convolutional kernel.

In addition, in the eighth group of the proposed model, several asymmetric convolu-
tion fusion strategies are used to extract deeper features. Inspired by inception v3, by using
multiple small convolution fusion instead of large convolution, we found that the cascade
of 1 × 3 convolution and 3 × 1 convolution can reduce the convolution computation
by about 33% compared with that using 3 × 3 directly. In this way, the computational
complexity of the model can be reduced effectively without affecting the performance of
the network model.

2.4. The Strategy of Nonlinear Feature Enhancement

The activation function plays an important role in training convolution neural network
models. The traditional ReLu function is as follows:

f (x) = max(0, x) (9)

Although this function converges faster than the Sigmoid function, ReLu is fragile
during training. If parameters such as the learning rate are set inappropriately, when
neuron necrosis occurs, the subsequent parameters will never be updated. The Sigmoid
activation function can be represented as

σ(x) =
1

1 + e−x (10)

The derivative of it is
σ′(x) = σ(x)[1− σ(x)] (11)

In back propagation, when the gradient is close to 0, the weights are not updated,
so the gradient can easily disappear. The hard-swish activation function is adopted in
the proposed model and is characterized by smooth nonlinearity with no upper bound or
lower bound. In training, although this function’s cost on embedded devices is non-zero,
in general, the convolution layer/full connection layer of flops is the main computational
model, which accounts for more than 95%, while the impact caused by the small cost of the
hard-swish is negligible. After the convolution of each layer, the BN layer and activation
function are added, which not only accelerates the training time of the model, but also
enables the neurons to adapt more fully to complex, non-linear tasks. At the same time, the
data offset can be eliminated to some extent, which can be seen in Algorithm 1.

During the model training stage, a type of weight attenuation, called L2 regularization,
is added to make the representative data distribution stand out. For the proposed model, a
regular term is added after the cost function:

J(Θ) =
1

2m
[∑m

i=i (vΘ(xi)− yi)
2 + λ(∑n

j=1 Θ2
j )] (12)

and the partial derivative can be obtained to yield

∂J(Θ)

∂Θj
=

1
m∑m

i=1 (vΘ(xi)− yi)xij +
λ

m
Θj (13)

The gradient descent is

Θj = Θj − α · ∂J(Θ)

∂Θj
(14)

Θj = Θj −
α

m

m

∑
i=1

(vΘ(xi)− yi)xi j −
αλ

m
Θj (15)

Θj = (1− αλ

m
)Θj −

α

m

m

∑
i=1

(vΘ(xi)− yi)xi j (16)
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when the coefficient of Θj is 1, clearly, (1 − αλ
m ) < 1, which indicates that during the

training process, the weight is attenuated, resulting in a smaller weight. Moreover, L2
regularization is adopted to alleviate the over-fitting phenomenon. In the experiment, the
regularization coefficient of L2 is set to 0.005.

2.5. Dataset Settings
2.5.1. UC Merced Land-Use Dataset (UCM21)

The images of this dataset are manually extracted from the USGS National Map Urban
Area Image Set for urban areas across the country. The spatial resolution of the image is
0.3 m. For UCM 21 datasets, the image size is 256 × 256 and contains 21 types of scene
images, 100 of each type, and 2100 spatial images. In the experiment, 80% randomly
selected images from UCM 21 are used for the training. The remaining images are used for
testing. Some scene images are shown in Figure 3.
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2.5.2. AID30 Dataset

The AID30 dataset is obtained by collecting samples from Google Earth images, which
is a large aerial image dataset. It comes from different remote imaging sensors, covering
different seasons in China, the United States, Germany, France, the United Kingdom, Italy,
and other countries. Therefore, it is a very challenging dataset. The spatial resolution of
the image is 0.5–0.8 m. Compared with the UCM datasets, the AID30 datasets feature more
images and categories with image sizes of 600 × 600, and a total of 30 categories of scene
images, each of which contains about 220~420 images, totaling 10,000 images. Some scene
images are shown in Figure 4.

To evaluate the proposed method effectively, two different data partitioning methods
are employed.

(1) In the experiment, 20% of the images are randomly selected for training, and the
rest are used for testing.

(2) In the experiment, 50% of the images are randomly selected for training, and the
rest are used for testing.
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2.5.3. RSSCN7 Dataset

The RSSCN7 dataset was released by Qin Zou Yu of Wuhan University in 2015. These
images are obtained in different seasons and weather changes, and are sampled with four
different scales. The RSSCN7 dataset includes seven types of scene images, 400 × 400 in
size. Each type is represented by 400 images, for a total of 2800 images. In the experiment,
50% of the images are randomly selected for training, and the rest are used for testing.
Some scene images are shown in Figure 5.
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2.5.4. NWPU45 Dataset

The NWPU45 dataset is large, covering more than 100 regions around the world. It is
composed of images obtained by Google Earth through satellite images, aerial photography,
and geographic information system (GIS). The images of the dataset selected for this study
include different angles, lighting conditions, time, and seasons, so the similarity between
classes is very high, which makes the process more challenging. The size of each image is
256 × 256, with 45 types of scene images, each of which is represented by 700 images, for
a total of 31,500. The spatial resolution of the images is 0.2–30 m. Some scene images are
shown in Figure 6. Two different data partition methods are used in the experiment.
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(1) In the experiment, 10% of the images are randomly selected for training, and the
rest are used for testing.

(2) In the experiment, 20% of the images are randomly selected for training, and the
rest are used for testing.

(3) In the experiment, 80% of the images are randomly selected for training, and the
rest are used for testing.

3. Experiment and Analysis
3.1. Setting of the Experiments
3.1.1. Data Preprocessing

A. Normalize the input image
B. Rotate the input image 0–60 degrees
C. Randomly flip the input image horizontally or vertically
D. Randomly offset the size of the image by 0.2 times

3.1.2. Parameter Settings

The initial learning rate is 0.01. The momentum of training is 0.9, and the batch size
is set to 16. The experiments are conducted on a computer with an Intel (R) Core (TM)
i7-10750H CPU, and RTX2060 GPU, and 16 GB of RAM.

3.2. The Performance of the Proposed Model

The proposed model is based on an improvement of the MobileNet network. To prove
the effectiveness of an attention-based multi-branch fusion strategy in the model, firstly, the
proposed model and MobileNet model are compared with the UCM21, AID30, NWPU45,
and RSSCN7 datasets. The overall accuracy (OA), kappa coefficient, F1 coefficient, and
average precision (AP) are adopted as the evaluation indexes. In the experiment, keras is
adopted to reproduce MobileNet and to fine-tune the last layer of the network. Table 1
gives the comparison results of the OA, kappa coefficient, AP, and F1 score between the
proposed model and the MobileNet model.

Table 1. Performance comparison between MobileNet and the proposed method.

DATA SET MobileNet AMB-CNN

OA(%) KAPPA(%) AP(%) F1 OA(%) KAPPA(%) AP(%) F1
80/20 UC 97.62 97.50 97.71 97.61 99.52 99.50 99.55 99.52
20/80 AID 87.21 86.76 87.43 87.18 93.27 93.04 93.05 92.99
50/50 AID 92.12 91.84 92.24 92.11 95.44 95.38 95.50 95.42

10/90 NWPU 82.66 82.27 82.74 82.60 88.99 88.74 89.04 88.95
20/80 NWPU 87.85 87.57 87.89 87.81 92.42 92.25 92.50 92.43
50/50 RSSCN 91.50 90.08 91.51 91.47 95.14 94.33 95.18 95.15

It can be seen from Table 1 that the classification performance of the proposed method
is better than that of MobileNet. For the AID30 dataset, when the proportion of training
sample and test sample is 20% and 80% (i.e., 20/80), respectively, the OA of the proposed
method is 6.06% higher than that of MobileNet, and the kappa of the proposed method is
higher by 6.28% than that of MobileNet. The F1 and AP results of the proposed method
are also the highest. For other datasets with different proportions of training samples and
test samples, the proposed method also shows an excellent classification performance.
This proves that the proposed attention-based multi-branch fusion strategy can further
extract the depth features of the remote sensing images, thus improving the classification
performance of the remote sensing images.

In addition, on the UCM21 (20/80) dataset, the confusion matrix obtained by the
proposed method and the MobileNet model are compared, as shown in Figure 7. It can be
seen from Figure 7a that the proposed method provides a 100% correct classification rate
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for almost all of the categories. Moreover, the number of classification error samples is far
less than that of the MobileNet model.
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Figure 7. Comparison of the confusion matrix of the proposed method and MobileNet on the UCM21 dataset.

To summarize, by using multiple evaluation indicators (OA, AP, kappa, and F1 con-
fusion matrix), the classification performance of the proposed method on six datasets is
higher than that of MobileNet. This proves the effectiveness of multi-branch fusion strategy
based on attention, which offers an excellent performance in remote sensing image scene
classification.

3.3. Comparison with Advanced Methods

The proposed AMB-CNN method considers the feature information and location
of the feature information comprehensively, applies the feature map with an enlarged
receptive field to the two convolution model structures, extracts the feature, and finally
fuses the multiple branches obtained through the attention mechanism. In this way, not



Remote Sens. 2021, 13, 1950 14 of 24

only the classification accuracy is effectively improved, but the complexity of the model is
also greatly reduced.

In the experiment, the proposed method is evaluated comprehensively through a
comparison with some state-of-the-art methods under the same conditions. Firstly, some ex-
periments are carried out on UCM21 dataset with training/test ratio of 8:2, the comparison
results are shown in Table 2.

Table 2. Performance comparison of the proposed model with some state-of-the-art methods on the UCM21 dataset.

The Network Model OA(%) Number of Parameters

Semi-supervised representation learning method [33] 94.05 ± 1.2 210 M
Multiple resolution BlockFeature method [34] 94.19 ± 1.5 -

Siamese CNN [35] 94.29 -
Siamese ResNet50 with R.D method [36] 94.76 -

Bidirectional adaptive feature fusion method [37] 95.48 130 M
Multiscale CNN [38] 96.66 ± 0.90 60 M

VGG_VD16 with SAFF method [39] 97.02 ± 0.78 15 M
Variable-weighted multi-fusion method [20] 97.79 -

ResNet+WSPM-CRC method [40] 97.95 23 M
Skip-Connected CNN [41] 98.04 ± 0.23 6 M

VGG16 with MSCP [42] 98.36 ± 0.58 -
Gated bidirectiona+global feature method [43] 98.57 ± 0.48 138 M

Feature aggregation CNN [44] 98.81 ± 0.24 130 M
Aggregated deep fisher feature method [45] 98.81 ± 0.51 23 M

Discriminative CNN [19] 98.93 ± 0.10 130 M
VGG16-DF method [46] 98.97 130 M

Scale-free CNN [47] 99.05 ± 0.27 130 M
Inceptionv3+CapsNet method [23] 99.05 ± 0.24 22 M

Positional context aggregation method [48] 99.21 ± 0.18 28 M
LCNN-BFF method [49] 99.29 ± 0.24 6.2 M
DDRL-AM method [50] 99.05 ± 0.08 -

HABFNet [31] 99.29 ± 0.35 6.2 M
EfficientNetB3-Attn-2 [32] 99.21 ± 0.22 -
The proposed AMB-CNN 99.52 ± 0.11 5.6 M

Here, the OA of the proposed model is 0.31% higher than that of the recently proposed
PANet50 [48] model and 0.23% higher than that of the LCNN-BFF dual branch fusion
network. Moreover, the parameters of the proposed model are only 5.6 M compared with
the SF-CNN of VGGNet [47], VGG16-DF [46], and FACNN [44]. Taking VGG16 as the
basic network model, the parameter amounts only account for 4.3% of these methods. For
models based on ResNet, such as PANet50, the number of parameters is only 20%. Notably,
the proposed AMB-CNN method still maintains the best performance with the fewest
parameters. For a more comprehensive evaluation of the proposed method, the UCM21
dataset is used for the cross validation (five-fold) experiment, and the OA accuracy of the
proposed AMB-CNN method is 99.49%.

Figures 8–10 show the AP comparison results of MobileNet, LCNN-BFF, and the
proposed AMB-CNN method for the RSSCN7 (5/5), AID30 (2/8), and NWPU45 (1/9)
datasets, respectively. The experiments show that the APs of the AMB-CNN method
are higher than those of the other two methods for each specific category. These results
illustrate that the strategy of multi-branch and attention fusion can extract the image feature
more effectively and can reduce the loss of useful information, which enables this strategy
to provide an excellent classification performance.
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Figure 10. AP comparison results of the three methods for each category of the NWPU45 (1/9) dataset.



Remote Sens. 2021, 13, 1950 16 of 24

Next, some experiments are carried out on the RSSCN7 dataset with a training/test
ratio of 5:5. The results are shown in Table 3. Here, the proposed model still has great
advantages on the RSSCN7 datasets with a high similarity between classes. Compared
with the two-stage deep feature fusion [17] method, the SPM-CRC [40] method, the WSPM-
CRC [40] method, and the LCNN-BFF [49] method, the OA of the proposed method is
improved by 2.77%, 1.28%, 1.24%, and 0.50%, respectively. Compared with the ADFF
method, although the OA of the proposed method is slightly lower, the number of parame-
ters is only 24.3% that of the ADFF method. In general, the complexity of the proposed
network model is greatly reduced at the cost of a slight decrease in classification accuracy.
In addition, in order to avoid biased results, a cross-validation (five-fold) experiment is also
used on the RSSCN7 dataset. The OA accuracy of the proposed method reaches 96.07%,
which proves the effectiveness of the proposed method.

Table 3. Performance comparison of the proposed model with some state-of-the-art methods on the
RSSCN7 dataset.

The Network Model OA(%) Number of Parameters

VGG16+SVM method [51] 87.18 130 M
Variable-weighted multi-fusion method [20] 89.1 -

TSDFF method [17] 92.37 ± 0.72 -
ResNet+SPM-CRC method [40] 93.86 23 M

ResNet+WSPM-CRC method [40] 93.9 23 M
LCNN-BFF method [49] 94.64 ± 0.21 6.2 M

Aggregated deep Fisher feature method [45] 95.21 ± 0.50 23 M
The proposed AMB-CNN 95.14 ± 0.24 5.6 M

Table 4 shows the experimental results on the AID dataset after a training/test ratio
of 2:8 and training/test ratio of 5:5. In the AID30 (20/80) classification, the proposed
method still provides the best classification accuracy. Compared with the GBNet+global
feature method [43], the LCNN-BFF method [49], the GBNet method [43], and the DCNN
method [19], the OA of the proposed method is improved by 1.07%, 1.67%, 3.11%, and
2.45%, respectively. In the AID30 (50/50) partition, the complexity of the proposed AMB-
CNN model is only 4.3%, 4.1%, and 37.3% that of the DCNN method, the GBNet+global
feature method [43], and the VGG_VD16+SAFF method [39]. The proposed method is also
tested on AID30 with 80% training, and the OA accuracy is up to 97.56%.

Table 4. Performance comparison of the proposed model with some state-of-the-art methods on the
AID30 dataset.

The Network Model OA(20/80)(%) OA(50/50)(%) Number of
Parameters

Bidirectional adaptive feature fusion method [37] - 93.56 130 M
VGG16+CapsNet [23] 91.63 ± 0.19 94.74 ± 0.17 130 M

Feature aggregation CNN [44] - 95.45 ± 0.11 130 M
Discriminative +VGG16 [19] 90.82 ± 0.16 96.89 ± 0.10 130 M

VGG16 with MSCP [42] 91.52 ± 0.21 94.42 ± 0.17 -
Fine-tuning method [51] 86.59 ± 0.29 89.64 ± 0.36 130 M

Gated bidirectiona method [43] 90.16 ± 0.24 93.72 ± 0.34 18 M
Gated bidirectiona+global feature method [43] 92.20 ± 0.23 95.48 ± 0.12 138 M

VGG_VD16 with SAFF method [39] 90.25 ± 0.29 93.83 ± 0.28 15 M
TSDFF method [17] - 91.8 -

Discriminative+AlexNet [19] 85.62 ± 0.10 94.47 ± 0.12 60 M
AlexNet with MSCP [42] 88.99 ± 0.38 92.36 ± 0.21 -
Skip-connected CNN [41] 91.10 ± 0.15 93.30 ± 0.13 6 M
LCNN-BFF method [49] 91.66 ± 0.48 94.64 ± 0.16 6.2 M
DDRL-AM method [50] 92.36 ± 0.10 96.25 ± 0.05 -

The proposed AMB-CNN 93.27 ± 0.22 95.54 ± 0.13 5.6 M

Finally, the effectiveness of the proposed method is further evaluated on a large
NWPU45 dataset. Some experiments are carried out under the conditions with a train-
ing/test ratio of 1:9 and a training/test ratio of 2:8. The results are shown in Table 5. The
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accuracy of our method in NWPU 45 (10/90) is 88.99, which outperforms some state-of-
the-art classification methods as follows: 2.46% higher than LCNN-BFF [49], 4.66% higher
than sCCov [41], and 3.66% higher than MSCP [42]. Moreover, in the NWPU45 (20/80)
partition, the performance of our proposed model remains excellent. In order to evaluate
our model more comprehensively, the proposed method is tested on the NWPU45 dataset
with 80% training, and the OA accuracy is up to 95.97%, 1.27% higher than that of the
Siamese VGG16 method.

Table 5. Performance comparison of the proposed model with some state-of-the-art methods on the
NWPU45 dataset.

The Network Model OA(10/90)(%) OA(20/80)(%) Number of
Parameters

VGG16+CapsNet [23] 85.05 ± 0.13 89.18 ± 0.14 130 M
Discriminative with AlexNet [19] 85.56 ± 0.20 87.24 ± 0.12 130 M
Discriminative with VGG16 [19] 89.22 ± 0.50 91.89 ± 0.22 130 M

R.D method [36] - 91.03 -
AlexNet with MSCP [42] 81.70 ± 0.23 85.58 ± 0.16 -
VGG16 with MSCP [42] 85.33 ± 0.17 88.93 ± 0.14 -

VGG_VD16 with the SAFF method [39] 84.38 ± 0.19 87.86 ± 0.14 15 M
Fine-tuning method [51] 87.15 ± 0.45 90.36 ± 0.18 130 M

Skip-connected CNN [41] 84.33 ± 0.19 87.30 ± 0.23 6 M
LCNN-BFF method [49] 86.53 ± 0.15 91.73 ± 0.17 6.2 M

The proposed AMB-CNN 88.99 ± 0.14 92.42 ± 0.14 5.6 M

Figures 11–15 show the confusion matrix of the proposed model under the RSSCN7
(50/50), AID (20/80), AID30 (50/50), NWPU45 (10/90), and NWPU45 (20/80) dataset
partitions. The results show that the proposed model can obtain better classification
results with multiple datasets. This indicates that after multi segment feature fusion, the
proposed network model can better overcome the high similarity between remote sensing
scene images.
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To comprehensively evaluate the proposed model from different perspectives, grad
cam is used to visually analyze the different network models. This method can use the
gradient of any target along with the last layer of the convolution network to generate
a rough attention map, which can be used to display the important areas in the model
prediction image. In the experiment, some images are selected randomly in the UCM21
dataset, and the latest LCNN-BFF method is compared with the proposed method. Some
remote sensing scene images, including an aircraft, fuel tank, golf course, sparse residence,
and forest, are randomly selected for comparison, as shown in Figure 16.
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It can be seen in Figure 16 that for the scene of storage tanks, the focus area of the
LCNN-BFF model is shifted, and the proposed AMB-CNN model can focus on the target
object very well. For the airplane, golf course, sparse residence, and forest scenes, the
focus areas of the LCNN-BFF are limited, and thus the regions surrounding the target are
ignored. Therefore, the extracted targets are incomplete. However, the proposed model
can still provide complete focus areas.

The trained network model is also tested with randomly selected images, as shown
in Figure 17. We can see that the prediction results provided by the proposed model are
consistent with the real scenarios, and the prediction confidences are all above 99%, with
some individual scenarios reaching 100%. This proves that the proposed method can
extract image features more effectively.
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4. Discussion
4.1. Model Analysis

The proposed AMB-CNN method is evaluated on four datasets with different division
proportions, and is proven to have a good classification performance. At the same time, the
number of parameters for the proposed method is lower than that of the other advanced
methods. These benefits come from the following two aspects. First, in the feature extrac-
tion stage, the model is divided into several modules, by which the shallow features and
deep features are extracted. At the same time, considering the complexity of the model, a
hybrid convolution method is adopted, and multiple small convolutions cascade instead
of a large convolution. Secondly, in the aspect of feature fusion, with the multi segment
attention mechanisms, the extracted features are input into the attention mechanism to
extract important information again, and finally, the multi branch features are fused.

4.2. Visual Dimension Assessment

T-distributed stochastic neighbor embedding (T-SNE) visualization is adopted to
further evaluate the performance of the AMB-CNN model. T-SNE data dimensionality re-
duction and visualization can better estimate the classification performance of the model by
mapping high-dimensional data into two-dimensional space and using scatter distribution
to visually display the classification effect. On the RSSCN7 (5/5) and UCM21 (8/2) datasets,
the T-SNE visualization effects of MobileNet, LCNN-BFF, and the proposed AMB-CNN
model are compared, as shown in Figure 18.
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In Figure 18, we can see that compared with the other two methods, the classification
results of the proposed method have a smaller intra class distance and larger inter class
distance, which indicates that the proposed method can better extract image features and
distinguish different categories, thereby providing an excellent performance for remote
sensing image scene classification.

5. Conclusions

In this paper, a lightweight convolutional neural network based on attention-oriented
multi-branch feature fusion (AMB-CNN) is proposed. This method has been proven to be
effective with various datasets and under various conditions. A multi-branch convolution
block is designed for feature extraction under a fully expanded receptive field. At the same
time, the attention mechanism is utilized for feature weighting analysis of the spatial and
channel information. Finally, all of the features are fused. In this way, not only are the
key features extracted accurately, but the loss of information is also reduced. In addition,
a network model with very low parameters is constructed through depthwise separable
convolution and traditional convolution alternation. The experimental results show that
compared with some state-of-the-art methods, the parameter of the proposed method is
only 5.6 M, while still having a great advantage in classification accuracy. Especially on
the UCM21 dataset, the OA of the proposed method is up to 99.52%, which exceeds that
of most of the existing advanced methods. In addition, the proposed method also shows
good performance on other datasets, such as the AID dataset with a training/test ratio
of 2:8, where the OA of the proposed method reaches 93.27%. The next step is to extend
this method to other remote sensing data, such as hyperspectral images, to improve the
universality of the proposed model.
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